Существуют фундаментальные принципы, которые необходимо учитывать, прогнозируя спрос на любом уровне иерархии плановых решений. Несоблюдение этих принципов приводит к тому, что прогноз спроса становится либо невысоким по качеству, либо нерелевантным с позиций принимаемых предприятием решений.

Горизонт прогнозирования спроса. Разницу во времени между моментом, когда прогнозируется спрос, и тем плановым периодом, на который прогнозируется спрос, называют временным лагом. Выбор необходимого временного лага зависит от того, сколько времени предприятию нужно, чтобы разработать и принять все необходимые меры для того, чтобы отреагировать на информацию о прогнозе спроса. Если для наращивания производственной мощности в соответствии с прогнозом о будущем росте спроса требуется год, прогноз спроса с горизонтом менее года недостаточен, он не позволит решить необходимую задачу управления производственной мощностью. Или, например, если длительность производственного цикла при «производстве на заказ» составляет один месяц, нелогично иметь горизонт прогнозирования более коротким, ибо на такой прогноз предприятие не сумеет вовремя среагировать, подготовив необходимые запасы сырья и материалов.

При выборе горизонта прогнозирования спроса необходимо учитывать, что на более отдаленные плановые периоды прогноз будет менее точным, чем на более близкие. Соответственно, выбор горизонта прогнозирования спроса должен быть обоснован теми решениями, которые принимаются на основе сформированного прогноза — слишком короткий горизонт прогнозирования не позволяет адекватно решить поставленную задачу, а более долгий — создает проблемы с качеством прогноза.

Выбор объекта прогнозирования спроса. Чем детальнее прогноз, тем менее он точен. Соответственно, для каждого уровня иерархии планов необходимо выбирать тот уровень детализации объекта прогнозирования, который позволит решить поставленную задачу, но не приводит к ненужной детализации. Ненужной считается детализация, которая, увеличивая трудоемкость и стоимость прогноза спроса, не прибавляет прогнозу ценности с точки зрения принятия решений.

В целом, можно сказать, что параметры прогнозов спроса определяются целью использования прогноза. Чем выше уровень принятия решений и чем крупнее по масштабу принимаемые решения, тем более крупно и на более далекую перспективу строится прогноз спроса.

Качество прогноза спроса. Любому прогнозу присущ риск ошибки. Трудно представить прогноз, не содержащий ошибку. Можно выделить два типа ошибки прогноза спроса: ошибка оценки объема спроса и ошибка оценки структуры спроса. Эти типы ошибок необходимо рассматривать в зависимости от того, о каком уровне принятия решений на предприятии идет речь.

Риск ошибки оценки объема спроса при прогнозировании спроса может быть на любом уровне планирования. При долгосрочном прогнозировании спроса риск проявляется на уровне категорий продукции и товарных групп. Риск влияет на доступность необходимого объема ключевых ресурсов и на исполнение финансовых планов предприятия. При оперативном прогнозировании спроса риск проявляется на уровне номенклатурных позиций продукции, и влияет на фактический уровень обслуживания клиентов.

Риск ошибки оценки структуры спроса при прогнозировании спроса проявляется только при долгосрочном прогнозировании спроса на уровне категорий продукции и товарных групп. Предполагается одна структура спроса внутри товарной группы по номенклатурным позициям, а фактически структура оказывается иной.

Учесть указанные риски можно двумя способами: повышением качества прогнозов и/или резервированием ресурсов, предназначенных специально для покрытия этих рисков. На практике, как правило, используют оба способа одновременно — работают над повышением качества прогнозов спроса, и (поскольку стопроцентное качество прогноза на практике недостижимо) формируют резервные величины ресурсов (резервные товарно­-материальные запасы, резервное время, резервную производственную мощность).

Для оценки качества прогноза выделяют две основные измеряемые характеристики: ошибка прогноза и точность прогноза.

Ошибка прогноза — разница между фактическим значением спроса и его прогнозным значением. Она может быть выражена как в абсолютном выражении, так и в относительном — в процентах от фактического значения спроса.

Точность прогноза — это выраженная в процентах величина, равная разнице между 100% и выраженной в процентах ошибкой прогноза спроса.

Основной для оценки точности и качества прогноза спроса является измеренная ошибка и точность прогноза для каждого отдельно взятого планового периода.

Однако чаще интерес представляет не отдельно взятый плановый период, а то, в какой степени хорош тот или иной метод прогнозирования спроса. Для этого принято рассчитывать сводные характеристики точности прогноза спроса. Двумя основными способами оценить точность метода прогнозирования спроса являются средняя абсолютная ошибка в процентах (MAPE – Mean Absolute Percentage Erro) и средняя процентная ошибка (MPE – Mean Percentage Error).

Ошибки прогноза спроса можно классифицировать на две категории: случайные отклонения и смещение.

Случайные отклонения означают, что в сумме ошибки прогноза стремятся к нулю, и плановые периоды, для которых спрос был переоценен, чередуются с плановыми периодами, для которых спрос был недооценен, то есть, в ошибке прогноза спроса нет тенденциозности, отрицательные и положительные значения ошибок прогноза спроса в целом погашают друг друга.

Смещение же означает, что есть серьезная проблема — значительно более серьезная, нежели случайные ошибки — систематическое завышение или занижение прогноза спроса. Смещение прогноза может объясняться как объективными, так и субъективными обстоятельствами. К объективным можно отнести выбор модели прогнозирования спроса, которая может быть не вполне релевантна, например, не учитывать существенные факторы, влияющие на спрос. Объективные обстоятельства поддаются оценке и корректировке путем улучшения модели прогнозирования, сбора и подготовки данных для прогнозирования спроса, обучения сотрудников прогнозированию.

Субъективные же обстоятельства связаны с намеренным занижением или завышением величины прогноза. Это означает, что прогнозист заинтересован, в силу тех или иных причин, в смещении прогноза, поскольку он получает те или иные выгоды от смещения прогноза. Например, если прогноз спроса формирует отдел продаж предприятия, и при этом он получает премию за перевыполнение плана продаж, трудно ожидать от него оптимистического прогноза спроса. И наоборот, если отдел маркетинга формирует прогноз спроса, а при этом бюджет маркетинга считается как процент от плановой выручки, не стоит ждать пессимистического прогноза спроса. Нейтрализация влияния субъективных факторов в некоторой мере достигается правильной организацией процесса прогнозирования спроса.

В заключение следует сказать, что, помимо понятия «точность прогноза», можно выделить понятие «качество прогноза». Под качеством прогноза понимают способность процесса прогнозирования спроса формировать такие прогнозы, которые устойчиво отличались бы от фактических значений спроса не более чем на заданную величину ошибки. То есть качество прогноза означает способность удерживать ошибку прогноза в заданных пределах. Это очень важно с точки зрения управления, поскольку к заданным границам ошибки прогноза предприятие может заранее подготовиться, и такой масштаб ошибки не ставит под угрозу уровень обслуживания заказчиков.

Замечено, что качество прогноза спроса определяется в большей мере хорошей организацией процесса прогнозирования спроса, чем отдельно взятыми сколь угодно сложными математическими моделями. Тем не менее, рассмотрим далее, какие типы методов прогнозирования спроса существуют, и в каких обстоятельствах их целесообразно применять.